

Certificate of constancy of performance

1404 – CPR – 3144

SLOVENIJE SLOVENIAN NATIONAL BUILDING AND CIVIL ENGINEERING

Dimičeva ulica 12 1000 Ljubljana Slovenija

info@zag.si www.zag.si

ZAVOD ZA GRADBENIŠTVO

INSTITUTE

Notified certification body NB 1404

In compliance with Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011 (the Construction products Regulation or CPR), this certificate applies to the construction product

TCM MPRO / CFM PESF Bonded anchor

Bonded injection type anchor for use in non-cracked concrete: sizes M8 to M16

placed on the market under the name or trade mark of

Trutek Fasteners Polska Sp. z o.o., Al. Krakowska 38, Janki, PL-05-090 Raszyn, Poland

and produced in the manufacturing plant

Factory Plant 1.

This certificate attests that all provisions concerning the assessment and verification of constancy of performance described in the

ETA-19/0153, issued on 6. 3. 2019

and

EAD 330499-00-0601

under system 1 for the performance set out in the ETA are applied and that the factory production control conducted by the manufacturer is assessed to ensure the

constancy of performance of the construction product.

This certificate was first issued on **12. 4. 2019** and will remain valid until **12. 4. 2024** as long as neither the ETA, the EAD, the construction product, the AVCP method nor the manufacturing conditions in the plant are modified significantly, unless suspended or withdrawn by the notified product certification body.

More detailed information about the scope of the product is given in the annex to this certificate.

Ljubljana, 12. 4. 2019

Authorised signatory of the Certification body: Marjan Japelj, B. Sc.

Certificate No. 1404 - CPR - 3144, issue 1

CHEMICAL ANCHORS

INJECTION RESIN TRUTEK TCM MPRO

Usage:

- sticking threaded rods in concrete, reinforced concrete, natural stone and masonry substrates
- fastening light construction structures, roofs, barriers, balustrades and handrails
- fixing all types of equipment in various building substrates
- fixing of fence panels, entrance gates and garage doors
- fixing in hollow substrates using TPS and TMS perfused sleeves

Resin setting times										
Substrate temperature	°C	35	25	15	5	-5	-10*			
Gel time	min	3	8	13	21	50	60			
Cure time	min	20	20	20	30	90	180			

Advantages:

- universal resin for various building substrates
- unscented resin does not contain styrene
- adheres perfectly to porous substrates
- highest strength parameters in masonry substrates
- resin available in 420ml and 300ml tubes
- for use in a wide range of TCS threaded rod types, galvanized steel, hot-dip galvanized steel, A2 and A4 stainless steel and stainless steel with increased corrosion resistance 1.4529

Anchor rod material:

Threaded rods are made of ordinary carbon steel in the mechanical properties class 4.6, 5.8 and 8.8 are covered with a layer of galvanic zinc coating min. 5 μ m or fire up to 45 μ m. Threaded rods made of stainless steel, A2 and A4 class.

Substrate material:

Non-cracked concrete, minimum class C20 / 25, full brick, class 15, silicate brick, class 15, and perforated brick, class 7.5;

TCM MPRO resin with threaded rods in non-cracked concrete

Resin / type of anchored rod	TCN	/ MPRO / TCS threa	ded rod steel class	5.8
Rod diameterd [mm]	M8	M10	M12	M16
Design load-bearing capacity for pulling out of non-cracked concrete NRd [kN]	4,3	6,2	8,0	10,4
Shear load capacity in non-cracked concrete VRd [kN]	7,2	12,0	16,8	31,19
Hole / drill diameter up to [mm]	10	12	14	18
Hole depth h1 [mm]	85	95	115	130
Effective anchorage depth hef [mm]	80	90	110	125
Substrate thickness hmin [mm]	100	120	125	140
Minimum spacing between smin anchors [mm]	40	45	55	65
Minimum distance from the edge cmin [mm]	40	45	55	65
Required tightening torque Tinst [Nm]	8	10	15	25
Approximate amount of resin per hole in [ml]	3,7	5,1	7,4	11,1
Number of mounts from one tube - 420ml capacity	131	82	56,7	37,8

Technical data Trutek TCM M PRO based on the strength of concrete C20 / 25 (according to PN-EN 206-1: 2003). The entire European Technical Assessment No. ETA-19/0153 should be taken into account when designing

TCM MPRO resin with TCS threaded rods in solid masonry substrates

Resin / type of anchored rod				тс			threade	d rods. s	steel cla	ISS 5.8			
Type of ground	FULL BRICK 15 grade				FU	FULL SILICATE BRICK				FULL CLINKER BRICK			
Rod diameter d [mm]	M8 M10 M12 M16				M8	M10	M12	M16	M8	M10	M12	M16	
Design loads for pulling and shearing NRd and VRd [kN]	1,68	2,6	3,12	3,36	3,1	3,2	3,8	4,1	2,3	3,0	3,7	4,6	
Hole / drill diameter up to [mm]	10	12	14	18	10	12	14	18	10	12	14	18	
Hole depth h1 [mm]	85	95	115	130	85	95	115	130	85	95	115	130	
Effective anchorage depth hef [mm]	80	90	110	125	80	90	110	125	80	90	110	125	
Substrate thickness hmin [mm]	100	120	125	140	100	120	125	140	100	120	125	140	
Distance between anchors Smin [mm]	120	135	165	188	120	135	165	188	120	135	165	188	
Distance from the edge Cmin [mm]	240	270	330	390	240	270	330	390	240	270	330	390	
Required tightening torque Tinst [Nm]	4	6	8	10	4	6	8	10	15	30	50	80	
Approximate amount of resin per hole in [ml]		5	8	12	4	5	8	12	4	5	8	12	
Number of mounts from one tube - 420ml capacity	105	80	50	35	105	80	50	35	105	80	50	35	

Technical data Trutek TCM 420M PRO were developed in accordance with ITB-KOT-2018/0124 edition 2 for the following strength of substrates:

- full ceramic brick, class 15 PN-EN 771-1: 2015 standards;

- full silicate brick class 15 according to PN-EN 771-2: 2015 standards;

- full clinker brick, class 35 according to PN-EN 771-1: 2015 standards;

CHEMICAL ANCHORS

TCM MPRO resin with TCS threaded rods in solid masonry substrates cont.

Resin / type of anchored rod	TCM MPRO / TCS threaded rods, steel class 5.8											
Type of ground	Aerat	ed conci	rete / Y1	TONG	Aera	ited con	rete / ۱	TONG	Aerated concrete / YTONG			
		grade	6			gra	de 4			gra	de 2	
Rod diameter d [mm]	M8	M10	M12	M16	M8	M10	M12	M16	M8	M10	M12	M16
Design loads for pulling and shearing NRd and VRd [kN]	2,2	2,9	3,1	3,1	1,8	2,6	2,8	2,8	1,3	1,7	1,8	1,9
Hole / drill diameter up to [mm]	10	12	14	18	10	12	14	18	10	12	14	18
Hole depth h1 [mm]	85	95	115	130	85	95	115	130	85	95	115	130
Effective anchorage depth hef [mm]	80	90	110	125	80	90	110	125	80	90	110	125
Substrate thickness hmin [mm]	100	120	125	140	100	120	125	140	100	120	125	140
Distance between anchors Smin [mm]	120	135	165	188	120	135	165	188	120	135	165	188
Distance from the edge Cmin [mm]	240	270	330	390	240	270	330	390	240	270	330	390
Required tightening torque Tinst [Nm]	5	8	8	10	5	8	8	10	4	6	8	10
Approximate amount of resin per hole in [ml]	4	5	8	12	4	5	8	12	4	5	8	12
Number of mounts from one tube - 420ml capacity	105	80	50	35	105	80	50	35	105	80	50	35

Technical data Trutek TCM 420M PRO were developed in accordance with ITB-KOT-2018/0124 edition 2 for the following strength of substrates:

- aerated concrete e.g. YTONG class 6, density ≥700 by PN-EN 771-4 + A1: 2015 standards

- aerated concrete e.g. YTONG class 4, density ≥650 by PN-EN 771-4 + A1: 2015 standards

- aerated concrete e.g. YTONG class 2, density ≥400 by PN-EN 771-4 + A1: 2015 standards

TCM MPRO resin with TCS threaded rods and TPS or TMS perforated sleeves in masonry substrates with holes

Resin / type of anchored rod	TCM MPRO / TCS threaded rods steel class 5.8 / TPS perforated sleeves or TMS mesh												
Type of ground		CLINKER	BRICK		PC	DORIZED	CERAMIC			SILICATE BRICK			
	WIT	H HOLES	OF CLASS	20	F	LUSHES,	class 15		w	ITH HOLE	S OF CLA	SS 15	
Rod diameter d[mm]	M8	M10	M12	M16	M8	M10	M12	M16	M8	M10	M12	M16	
Pull-out and shear load capacity NRd and VRd [kN]	1,8	3,3	3,7	4,0	0,9	1,6	1,6	1,7	1,8	3,3	3,7	4,0	
Hole / drill diameter up to [mm]	12	16	16	20	12	16	16	20	12	16	16	20	
Dimensions of the TPS or TMS perforated sleeve	12x50	15x85	15x85	20x85	12x50	15x85	15x85	20x85	12x50	15x85	15x85	20x85	
Hole depth h1 [mm]	60	95	95	95	60	95	95	95	60	95	95	95	
Effective anchorage depth hef [mm]	50	85	85	85	50	85	85	85	50	85	85	85	
Substrate thickness hmin [mm]	80	110	110	110	80	110	110	110	80	110	110	110	
Distance between anchors Smin [mm]	100	170	170	170	100	170	170	170	100	170	170	170	
Distance from the edge Cmin [mm]	100	100	100	100	100	100	100	100	100	100	100	100	
Required tightening torque Tinst [Nm]	5	8	8	10	5	8	8	10	5	8	8	10	
Approximate amount of resin per hole in [ml]	7	20	20	30	7	20	20	30	7	20	20	30	
Nbr of mounts from one tube - capacity 420 ml	60	21	21	14	60	21	21	14	60	21	21	14	

Technical data Trutek TCM 420M PRO were developed in accordance with ITB-KOT-2018/0124 edition 2 for the following strength of substrates:

- clinker brick with holes class 20 according to PN-EN 771-1: 2015 standards (wall thickness ≥10mm);

- class 15 ceramic hollow bricks according to PN-EN 771-1: 2015 standards (wall thickness ≥12mm);

- silicate brick with holes of class 15 acc. PN-EN 771-2: 2015 standards (wall thickness ≥15mm);

TCM MPRO resin with TIS threaded sleeves in solid masonry substrates

Resin / type of anchored sleeve		TCM M	IPRO / TI	S thread	ed sleeve	es / TPS p	erforate	d sleeve	s or TMS	r TMS mesh sleeves			
Type of ground	FUL	L BRICK 1	5 grade		Aera	ated con	crete / Y	TONG	Aera	ted conc	rete / YT	ONG	
						cla	ss 6			cla	ss 4		
Rod diameter d [mm]	TIS06	TIS08	TIS10	TIS12	TIS06	TIS08	TIS10	TIS12	TIS06	TIS08	TIS10	TIS12	
Pull-out and shear load capacity NRd and VRd [kN]	2,6	2,4	6,7	8,2	1,0	2,3	2,7	2,8	0,3	1,2	1,5	1,6	
Hole / drill diameter up to [mm]	10	14	16	18	10	14	16	18	10	14	16	18	
Hole depth h1 [mm]	60	95	95	95	60	95	95	95	60	95	95	95	
Effective anchorage depth hef [mm]	55	85	85	85	55	85	85	85	55	85	85	85	
Substrate thickness hmin [mm]	80	110	110	110	80	110	110	110	80	110	110	110	
Distance between anchors Smin [mm]	100	160	160	160	100	160	160	160	100	160	160	160	
Distance from the edge Cmin [mm]	150	240	240	240	150	240	240	240	150	240	240	240	
Required tightening torque Tinst [Nm]	4	10	13	24	4	10	13	24	4	10	13	24	
Approximate amount of resin per hole in [ml]	2,6	6,7	8,0	9,5	2,6	6,7	8,0	9,5	2,6	6,7	8,0	9,5	
Number of mounts from one tube - 420ml capacity	162	63	52	44	162	63	52	44	162	63	52	44	

Technical data Trutek TCM 420M PRO were developed in accordance with ITB-KOT-2018/0124 edition 2 for the following strength of substrates:

- full ceramic brick, class 15 PN-EN 771-1: 2015 standards;

- aerated concrete e.g. YTONG class 6, density ≥700 by PN-EN 771-4 + A1: 2015 standards

- aerated concrete e.g. YTONG class 4, density ≥650 by PN-EN 771-4 + A1: 2015 standards

TCM MPRO resin with TIS threaded sleeves and TPS or TMS perforated sleeves in masonry substrates with holes

Resin / type of anchored rod	TCM MPRO / TIS threaded sleeves / TPS perforated sleeves or TMS mesh sleeves							
Type of ground	POORIZED CERAMIC FLUSHES, class 15							
Rod diameter d [mm]	TIS06	TIS08	TIS10	TIS12				
Design loads for pulling and shearing NRd and VRd [kN]	0,4	1,0	1,3,	1,5				
Hole / drill diameter up to [mm]	12	16	20	20				
Dimensions of the TPS or TMS perforated sleeve	12x50	15x85	20x85	20x85				
Hole depth h1 [mm]	60	95	95	95				
Effective anchorage depth hef [mm]	50	85	85	85				
Substrate thickness hmin [mm]	80	110	110	110				
Distance between anchors Smin [mm]	100	170	170	170				
Distance from the edge Cmin [mm]	100	100	100	100				
Required tightening torque Tinst [Nm]	4	10	13	24				
Approximate amount of resin per hole in [ml]	7	20	30	30				
Number of mounts from one tube - 420ml capacity	60	21	14	14				

Technical data Trutek TCM 420M PRO were developed in accordance with ITB-KOT-2018/0124 edition 2 for the following strength of substrates: - class 15 ceramic hollow bricks according to PN-EN 771-1: 2015 standards (wall thickness ≥12mm);

Chemical anchor rods and accessories

Rod diameter d [mm]	Hole diameter d _o [mm]	Minimum substrate thickness h _{min} [mm]	Hole depth h1[mm]	Nylon perforated sleeve TPS	Steel Mesh Sleeve TMS	TCS Anchor rod steel class 5.8 and 8.8	Anchor rod TCS G steel class 5.8 hot dipped galvanised	Anchor rod TCS SSA4 stainless steel A4-316	Hole cleaning brush TCB	Drill Bits
8	10	100	85	-	-	TCS08110	TCS08110G	TCS08110SSA4	TCB08	TCPP10160
10	12	120	95	-	-	TCS10130	TCS10130G	TCS10130SSA4	TCB10	TCPP12160
12	14	125	115	-	-	TCS12160	TCS12160G	TCS12160SSA4	TCB12	TCPP14160
16	18	140	130	-	-	TCS16190	TCS16190G	TCS16190SSA4	TCB16	TCPP18210
8	12	120	60	TPS01	TMS12	TCS08110	TCS08110G	TCS08110SSA4	TCB12	TCPP12160
10	16	120	95	TPS02	TMS16	TCS10130	TCS10130G	TCS10130SSA4	TCB16	TCPP16160
12	16	120	95	TPS02	TMS16	TCS12160	TCS12160G	TCS12160SSA4	TCB16	TCPP16160
16	22	120	95	TPS04	TMS22	TCS16190	TCS16190G	TCS16190SSA4	TCB20	TCMU22340

Tel.: +48 22 701 93 24-25 Fax: +48 22 100 12 31 www.trutekfasteners.eu
e-mail: info@trutek.com.pl

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-19/0153 of 2019/03/06

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:	TCM MPRO / CFM PESF Bonded anchor
Product family to which the above construction product belongs:	Bonded injection type anchor for use in non-cracked concrete: sizes M8 to M16
Manufacturer:	Trutek Fasteners Polska Sp z o.o. Al. Krakowska 38 Janki PL-05-090 Raszyn Tel. +48 22 701 93 24 Fax +48 22 100 12 31 Internet <u>www.trutek.com.pl</u>
Manufacturing plant:	Trutek Fasteners Polska Sp z o.o. Factory Plant 1
This European Technical Assessment contains:	16 pages including 11 annexes which form an integral part of the document
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of: This version replaces:	EAD 330499-00-0601, Bonded fasteners for use in concrete

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (except the confidential Annexes referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product

The TCM MPRO / CFM PESF is a bonded anchor (injection type) consisting of an injection mortar cartridge equipped with a special mixing nozzle and threaded anchor rod of the sizes M8 to M16 made of galvanized carbon steel, stainless steel A4-70 or high corrosion resistant steel. See table A2 for material specification of the rods.

The threaded rod is placed into a drilled hole previously injected (using an applicator gun) with a mortar with a slow and slight twisting motion. The anchor rod is anchored by the bond between rod, mortar and concrete.

Each mortar cartridge is marked with the identifying mark of the producer and with the trade name. The mortar cartridges are available in different sizes.

The anchor in the range of M8 to M16 and the mortar cartridges corresponds to the drawings given in the Annex A1 and A2.

The characteristic material values, dimensions and tolerances of the anchors not indicated in Annexes shall correspond to the respective values laid down in the technical documentation¹ of this European Technical Assessment.

The anchors are intended to be used with embedment depth given in Annex A2, Table A1. For the installed anchor, see Figure given in Annex A2. The intended use specifications of the product are detailed in the Annex B1.

2 Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B1 to B9

The provisions made in this European Technical Assessment are based on an assumed intended working

life of the anchor of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

¹ The technical documentation of this European Technical Assessment is deposited at ETA-Danmark and, as far as relevant for the tasks of the Notified bodies involved in the attestation of conformity procedure, is handed over to the notified bodies.

3 Performance of the product and references to the methods used for its assessment

3.1 Characteristics of product

Mechanical resistance and stability (BWR 1):

The essential characteristics are detailed in the Annex from C1 to C3.

Safety in case of fire (BWR 2):

The essential characteristics are detailed in the Annex from C4.

Hygiene, health and the environment (BWR3):

No performance assessed

Safety in use (BWR4):

For basic requirement Safety in use the same criteria are valid for Basic Requirement Mechanical resistance and stability (BWR1).

Sustainable use of natural resources (BWR7)

No performance determined

Other Basic Requirements are not relevant.

3.2 Methods of assessment

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 has been made in accordance with the EAD 330499-00-0601, Bonded fasteners for use in concrete.

4 Assessment and verification of constancy of performance (AVCP)

4.1 AVCP system

According to the decision 96/582/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1.

5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking.

Issued in Copenhagen on 2019-03-06 by

Thomas Bruun Managing Director, ETA-Danmark

Table A1: Threaded rod dimensions

Anchor size			M8	M10	M12	M16
Diameter of anchor rod	d	[mm] =	8	10	12	16
Range of anchor depth hef	min	[mm] =	60	60	70	80
and bore hole depth h_0	max	[mm] =	160	200	240	320
Nominal anchorage depth	h _{ef}	[mm] =	80	90	110	125
Nominal diameter of drill bit	do	[mm] =	10	12	14	18
Diameter of clearance hole in the fixture	df	[mm] ≤	9	12	14	18
Diameter of steel brush	db	[mm] ≤	12	13,3	14,9	19,35
Installation torque moment	Tinst	[Nm] =	8	10	15	25
Minimum thickness of concrete member	h _{min}	[mm]	h _{ef} + 3	0 mm ≥ 10	00 mm	h _{ef} + 2d ₀
Minimum spacing	S _{min}	[mm] =	0,5 h _{ef}			
Minimum edge distance	Cmin	[mm] =	0,5 h _{ef}			

TCM MPRO / CFM PESF

Threaded rod types and dimensions

Annex A2

of European Technical Assessment ETA-19/0153

Designation	Material							
Threaded rods made of z	inc coated steel							
	Strength class 5.8, 8.8, 10.9 EN ISO 898-1							
Threaded rod M8 – M16	Steel galvanized ≥ 5µm EN ISO 4042							
	Hot dipped galvanized ≥ 45µm EN ISO 10684							
Washer ISO 7089	Steel galvanized EN ISO 4042; hot dipped galvanized EN ISO 10684							
N14	Strength class 8 EN ISO 898-2							
	Steel galvanized ≥ 5µm EN ISO 4042							
EN 150 4032	Hot dipped galvanized ≥ 45µm EN ISO 10684							
Threaded rods made of stainless steel								
Threaded red M9 M16	Strength class 70 EN ISO 3506-1;							
	Stainless steel 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 en 10088							
Washer ISO 7089	Stainless steel 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 en 10088							
Nut	Strength class 70 EN ISO 3506-1;							
EN ISO 4032	Stainless steel 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 en 10088							
Threaded rods made of h	igh corrosion resistant steel							
Threaded red M9 M16	R _m = 800 N/mm ² ; R _{p0,2} =640 N/mm ²							
	High corrosion resistant steel 1.4529, 1.4565 EN 10088							
Washer	High correction registrant steel 1 4520, 1 4565 EN 10088							
ISO 7089								
Nut	Strength class 70 EN ISO 3506-2;							
EN ISO 4032	High corrosion resistant steel 1.4529, 1.4565 EN 10088							

TCM MPRO / CFM PESF

Annex A3

Materials

of European Technical Assessment ETA-19/0153

Use:

The anchors are intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 of Regulation 305/2011 (EU) shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences.

Anchors subject to:

- Static and quasi-static loads: sizes from M8 to M16.

Base materials:

- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum to C50/60 at maximum according to EN 206-1.
- Non cracked concrete: sizes from M8 to M16

Temperature range:

The anchors may be used in the following temperature range:

- (a) Winter version: max short term temperature + 40 °C and max long term temperature + 24 °C;
- (b) Standard version: max short term temperature + 80 °C and max long term temperature + 50 °C.

Use conditions (Environmental conditions):

Elements made of galvanized steel and stainless steel may be used in structures subject to the following conditions:

- Internal dry conditions
- Dry internal conditions, external atmospheric exposure (including industrial and marine environment) or exposure in permanently damp internal conditions if no particular aggressive conditions exist.
- dry internal conditions, external atmospheric exposure, in permanently damp internal conditions or in other particular aggressive conditions e.g. permanent, alternating immersion in seawater, splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Installation:

The anchors may be installed in:

- Dry or wet concrete (use category 1): sizes from M8 to M16.
- Flooded holes with the exception of seawater (use category 2): sizes from M8 to M16.
- All the diameters may be used overhead: sizes from M8 to M16.
- The anchor is suitable for hammer drilled holes: sizes from M8 to M16.

Proposed design methods:

- Static and quasi-static load: EN 1992-4

TCM MPRO / CFM PESF

Annex B1

Intended use – Specification

of European Technical Assessment ETA-19/0153

Table B1: Installation data

Threaded rod And rebar	Size	Nominal drill bit diameter d₀ (mm)	Steel Brush	Cleaning m	ethods
		8		Manual cleaning (MAC)	Compressed air cleaning (CAC)
Studs	M8	10	12mm	Yes … h _{ef} ≤ 80 mm	
	M10	12	14mm	Yes … h _{ef} ≤ 100mm	Yes
	M12	14	16mm	Yes … h _{ef} ≤ 120mm	
	M16	18	20mm	Yes h _{ef} ≤ 160mm	

Manual Cleaning (MAC): Hand pump recommended for Blowing out bore holes with diameters $d_0 \le 24$ mm and bore holes depth $h_0 \le 10d$

Compressed air cleaning (CAC): Recommended air nozzle with an Orifice opening of minimum 3,5mm in diameter.

Table B2: Minimum curing time

Minimum base material temperature C°	Gel time (working time) In dry/wet concrete	Cure time
0°C ≤ T _{base material} < 10°C	20 min	90 min
10°C ≤ T _{base material} < 20°C	9 min	60 min
20°C ≤ T _{base material} < 30°C	5 min	30 min
$30^{\circ}C \leq T_{\text{base material}} \leq 40^{\circ}C$	3 min	20 min

The temperature of the bond material must be $\geq 20^{\circ}$ C

TCM MPRO / CFM PESF

Annex B2

of European Technical Assessment ETA-19/0153

Intended use - data

Table B3 - parameters: drilling, hole cleaning and installation						
Bore hole drilling						
	Drill hole in the substrate to the required embedment depth using the appropriately sized carbide drill bit.					
Bore hole cleaning Just be	fore setting an anchor, the bore hole must be free of d	ust and debris.				
a) Manual air cleaning (MAG	C) for all bore hole diameters $d_0 \le 24$ mm and bore hole	depth h₀≤ 10d				
X 4	The manual pump shall be used for blowing out be $d_0 \le 24$ mm and embedment depths up to $h_{ef} \le 10d$ Blow out at least 4 times from the back of the bore	ore holes up to diameters e hole, using an extension if				
	needed.					
X 4	Brush 4 times with the specified brush size (see T steel brush to the back of the hole (if needed with motion and removing it.	Brush 4 times with the specified brush size (see Table B1) by inserting the steel brush to the back of the hole (if needed with an extension) in a twisting motion and removing it.				
X 4	Blow out again with manual pump at least 4 times.					
b) Compressed air cleaning	(CAC) for all bore hole diameters d _o and all bore hole	depths				
€ Bar	Blow 2 times from the back of the hole (if needed with a nozzle extension) over the whole length with oil-free compressed air (min. 6 bar at 6 m ³ /h).					
× 2	Brush 2 times with the specified brush size (see Table B1) by inserting the steel brush to the back of the hole (if needed with an extension) in a twisting motion and removing it.					
••• ⁶ Bar X 2	Blow out again with compressed air at least 2 times.					
TO	CM MPRO / CFM PESF	Annex B3				
Procedure (1) Of European Technical Assessmen ETA-19/0153						

Table B4 - parameters: drilling, hole cleaning and installation					
	Remove the threaded cap from the cartridge.				
	Tightly attach the supplied mixing nozzle. Do not way. Made sure the mixing element is inside the r supplied mixer.	Tightly attach the supplied mixing nozzle. Do not modify the mixer in any way. Made sure the mixing element is inside the mixer. Use only the supplied mixer.			
	Insert the cartridge into the dispenser gun.				
×	Discard the initial trigger pulls of adhesive. Deper cartridge, an initial amount of adhesive mix must Discard quantities are - 5cm for between 150ml, 3 - 10cm for all other cartridg	Discard the initial trigger pulls of adhesive. Depending on the size of the cartridge, an initial amount of adhesive mix must be discarded. Discard quantities are - 5cm for between 150ml, 300ml & 400ml Foil Pack - 10cm for all other cartridges			
	Inject the adhesive starting at the back of the hole mixer with each trigger pull. Fill holes approximately 2/3 full, to ensure that the anchor and the concrete is completely filled with a embedment depth.	Inject the adhesive starting at the back of the hole, slowly withdrawing the mixer with each trigger pull. Fill holes approximately 2/3 full, to ensure that the annular gap between the anchor and the concrete is completely filled with adhesive along the embedment depth.			
h _{ef}	Before use, verify that the threaded rod is dry and Install the threaded rod to the required embedme gel time t_{gel} has elapsed. The working time t_{gel} is g	Before use, verify that the threaded rod is dry and free of contaminants. Install the threaded rod to the required embedment depth during the open gel time t_{gel} has elapsed. The working time t_{gel} is given in Table B2.			
	The anchor can be loaded after the required curing time t_{cure} (see Table B2). The applied torque shall not exceed the values T_{max} given in Table A1.				
	· · · · · · · · · · · · · · · · · · ·				
	TCM MPRO / CFM PESF	Annex B4			
	Procedure (2)	ot European Technical Assessment ETA-19/0153			

TCM MPRO / CFM PESF with th	readed rods		M8	M10	M12	M16
Steel failure				•		
Characteristic resistance, class 5.8	N _{Rk,s}	[kN]	18	29	42	79
Characteristic resistance, class 8.8	N _{Rk,s}	[kN]	29	46	67	126
Partial safety factor	γms,N ¹⁾	[-]			1,5	
Characteristic resistance, class 10.9	N _{Rk,s}	[kN]	36	58	84	157
Partial safety factor	γms,N ¹⁾	[-]			1,4	
Characteristic resistance, A4-70	N _{Rk,s}	[kN]	26	41	59	110
Partial safety factor	γMs,N ¹⁾	[-]			1,87	
Characteristic resistance, HCR	N _{Rk,s}	[kN]	29	46	67	126
Partial safety factor	γMs,N ¹⁾	[-]			1,5	
Combined Pull-out and Concrete co	ne failure ²⁾					
Diameter of threaded rod	d	[mm]	8	10	12	16
Characteristic bond resistance in non-	cracked concrete	C20/25 – dry o	r wet concret	e		
Temperature range a ³⁾ : 40°C/24°C	⊄Rk,ucr	[N/mm²]	6,0	5,5	5,0	4,0
Temperature range b ³⁾ : 80°C/50°C	τ _{Rk,ucr}	[N/mm²]	4,5	4,0	3,5	3,0
Partial safety factor – dry or wet concrete	γмp=γмc ¹⁾ [-]		2,1 ⁵⁾		1,8 ⁶⁾	
Characteristic bond resistance in non-o	cracked concrete	C20/25 – flood	led holes			
Temperature range a ³⁾ : 40°C/24°C	τ _{Rk,ucr}	[N/mm²]	5,0	4,0	4,0	3,5
Temperature range lb ³⁾ : 80°C/50°C	τ _{Rk,ucr}	[N/mm²]	3,5	3,0	3,0	3,0
Partial safety factor – flooded holes	γ _{Mp} =γ _{Mc} ¹⁾	[-]			2,1 ⁵⁾	
		C30/37			1,08	
in non-cracked concrete	ψc	ψc C40/50 1,15			1,15	
		C50/60			1,19	
Splitting failure ²⁾		-				
	h /	′ h _{ef} ⁴⁾ ≥ 2,0	1,0 h _{ef}		2,4 2,2 2	
Edge distance $c_{cr,sp}$ [mm] for	2,0 > h / h _{ef} ⁴⁾ > 1,3		5,28 h _{ef} - 2,14 h		1.8 1.6 1.4 1.2	
	h / h _{ef} ⁴⁾ ≤ 1,3		2,5 h _{ef}		1 0,5 0,75 1 1,25 1,5 c/h	1,75 2 2,25 2,5 ef
Spacing	S _{cr,sp} [mm]			2 Ccr,sp		
Partial safety factor – dry or wet concrete	γ _{Msp} =γ _{Mc} ¹⁾ [-]		2,1 ⁵⁾	2,1 ⁵⁾ 1,8 ⁶⁾		
			2,1 ⁵⁾			

TCM MPRO / CFM PESF

Performance for static and quasi-static loads: Resistances

Annex C1 of European Technical Assessment ETA-19/0153

Table C2: Displacements under tension load

TCM MPRO / CFM PESF with threaded rods			M8	M10	M12	M16	
Temperature range a 7): 40)°C / 24°C						
Admissible service load	F	[kN]	9,0	10,4	13,2	16,1	
Displacement	δ _{N0}	[mm]	0,22	0,21	0,19	0,25	
Displacement	δ _{N∞}	[mm]	-	-	0,29	-	
Temperature range b ⁷): 80°C / 50°C							
Admissible service load	F	[kN]	6,8	7,5	9,2	12,1	
Displacement	δ _{N0}	[mm]	0,35	0,33	0,30	0,40	
Displacement	δ _{N∞}	[mm]	-	-	0,38	-	

⁷⁾ Explanation see annex B1

TCM MPRO / CFM PESF

Performance for static, quasi-static: Displacements

Annex C2 of European Technical Assessment ETA-19/0153

TCM MPRO / CFM PESF with th	readed r	ods	M8	M10	M12	M16
Steel failure without lever arm						•
Characteristic resistance, class 5.8	V _{Rk,s}	[kN]	9	15	21	39
Characteristic resistance, class 8.8	V _{Rk,s}	[kN]	15	23	34	63
Characteristic resistance, class 10.9	V _{Rk,s}	[kN]	18	29	42	79
Characteristic resistance, A4-70	V _{Rk,s}	[kN]	13	20	30	55
Characteristic resistance, HCR	V _{Rk,s}	[kN]	15	23	34	62,8
Steel failure with lever arm						
Characteristic resistance, class 5.8	M ⁰ Rk,s	[Nm]	19	37	66	167
Characteristic resistance, class 8.8	M ⁰ Rk,s	[Nm]	30	60	105	266
Characteristic resistance, class 10.9	M ⁰ Rk,s	[Nm]	38	75	131	333
Characteristic resistance, A4-70	M ⁰ Rk,s	[Nm]	26	53	92	233
Characteristic resistance, HCR	M ⁰ Rk,s	[Nm]	30	60	105	266
Partial safety factor steel failure						
grade 5.8 or 8.8	$\gamma_{Ms,V}^{1)}$	[-]	1,25			
grade 10.9	γMs,V ¹⁾	[-]	1,50			
A4-70	$\gamma_{Ms,V}^{1)}$	[-]	1,56			
HCR	γMs,V)	[-]	1,25			
Concrete pryout failure		_				
Factor in equation (27) of CEN/TS 1992-4-5, 6.3.3	k ₃	[-]	2,0			
Partial safety factor	γMc ¹⁾	[-]	1,8 ⁶⁾			
Concrete edge failure						
Partial safety factor	γ _{Mc} ¹⁾	[-]	2,1 ⁵⁾ 1,8 ⁶⁾			

¹⁾ In absence of national regulations

⁵⁾ The partial safety factor γ_{inst} =1,4 included

⁶⁾ The partial safety factor γ_{inst} =1,2 included.

Table C4: Displacements under shear load

TCM MPRO / CFM PESF with threaded rods		M8	M10	M12	M16	
Displacement 8)	δ _{V0}	[mm/kN]	0,06	0,06	0,05	0,04
Displacement 8)	δ_{V^∞}	[mm/kN]	0,09	0,08	0,08	0,06

⁸⁾ Calculation of displacement under service load: V_{sd} design value of shear load Displacement under short term loading = δ_{V0} · V_{sd}/1,4 Displacement under short term loading = $\delta_{V\infty}$ · V_{sd}/1,4

TCM MPRO / CFM PESF

Performance for static, quasi-static and seismic loads: Displacements

Annex C3 of European Technical Assessment ETA-19/0153

Table C5: Resistance to fire					
ESSENTIAL CHARACTERISTICS	PERFORMANCE				
Resistance to fire	No performance assessed				
Table C6: Reaction to fire					
ESSENTIAL CHARACTERISTICS	PERFORMANCE				
Reaction to fire	In the final application, the thickness of the m and most of the mortar is material classifie Decision 96/603/EC. Therefore, it may be material (synthetic mortar or a mixture of synth mortar) in connection with the metal anchor in not contribute to fire growth or to the fully dev influence to the smoke hazard.	ortar layer is about 1 to 2 mm d class A1 according to EC assumed that the bonding netic mortar and cementitious in the end use application do veloped fire and they have no			
TCM MP	RO / CFM PESF	Annex C4 of European Technical Assessment ETA-19/0153			